
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2008; 58:827–860
Published online 28 March 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1769

CFD-based optimization of aerofoils using radial basis functions
for domain element parameterization and mesh deformation
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SUMMARY

A novel domain element shape parameterization method is presented for computational fluid dynamics-
based shape optimization. The method is to achieve two aims: (1) provide a generic ‘wrap-around’
optimization tool that is independent of both flow solver and grid generation package and (2) provide a
method that allows high-fidelity aerodynamic optimization of two- and three-dimensional bodies with a
low number of design variables. The parameterization technique uses radial basis functions to transfer
domain element movements into deformations of the design surface and corresponding aerodynamic
mesh, thus allowing total independence from the grid generation package (structured or unstructured).
Independence from the flow solver (either inviscid, viscous, aeroelastic) is achieved by obtaining sensitivity
information for an advanced gradient-based optimizer (feasible sequential quadratic programming) by
finite-differences.

Results are presented for two-dimensional aerofoil inverse design and drag optimization problems.
Inverse design results demonstrate that a large proportion of the design space is feasible with a relatively
low number of design variables using the domain element parameterization. Heavily constrained (in lift,
volume, and moment) two-dimensional aerofoil drag optimization has shown that significant improvements
over existing designs can be achieved using this method, through the use of various objective functions.
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1. INTRODUCTION

Within the aerospace industry, individual companies are continually striving for increased compet-
itive strength, and this is frequently achieved by an advancement in design. While some factors are
difficult to determine, for example, aesthetics, many of the factors associated with a design’s perfor-
mance can be quantified and often predicted numerically. The injection of numerical optimization
into the design process along with advances in computer hardware has allowed engineers and
researchers to attempt problems with increased complexity and to maximize a design’s predicted
performance within pre-specified limits and constraints.

However, the quality and applicability of results gained by numerical optimization techniques are
inherently dependent on the fidelity of the analysis tool used. Computational fluid dynamics (CFD)
is at the forefront of aerodynamic analysis capabilities, and optimization algorithms can be applied
to such codes with the aim of improving the numeric value of an objective function. The objective
function in this sense is defined as an indicator of aerodynamic performance and is typically
based on drag, lift and moment coefficients. High-fidelity aerodynamic shape optimization has
previously been applied to two-dimensional aerofoil sections [1–4] and aspects of three-dimensional
aircraft [5–11], 3D aeroelastic aircraft [12], and even proof-of-concept optimization of rotors
[13, 14].

Within the UK Rotorcraft DARP (Defence and Aerospace Research Partnership), a collaborative
numerical simulation research theme exists between the Universities of Bristol and Liverpool
and Agusta–Westland Helicopters. Liverpool have provided the flow solver, an unsteady implicit,
Navier–Stokes, parallel multiblock code [15], and Bristol the mesh generation tools [16]. The
objective of this research theme is to use CFD in the main industrial design loop at Agusta–
Westland, and one aspect of this is the development of aerodynamic optimization tools, to be
wrapped around the flow solver and grid generation software already under development.

There are three critical areas involved in the development of the optimization tool: suitable
parameterization of the aerodynamic body, including effective surface and mesh deformation;
computation of the required sensitivities for each parameter; and effective stable optimization of
the design. Each area is reviewed and described in detail in the following sections. The tools
required are developed and applied to a two-dimensional aerofoil, including a study of sensitivity
dependence on perturbation sizing and grid density. Inverse design results illustrate a large and
appropriate region of design space is achievable with the parameterization method, and heavily
constrained aerofoil optimization shows significant drag reductions that can be achieved over
initial designs. The use of various objective functions to achieve this drag reduction is also
considered.

2. PARAMETERIZATION OPTIONS

The choice of parameterization method has implications to both the success and the computational
cost of an optimization. With regard to success, the method must allow sufficient free-form design
such that any likely optimum design that may exist is achievable, and inverse design methods
are usually applied to gauge the range of design space achievable by any method. To keep
computational cost to a minimum, it is essential to use both an efficient optimization strategy and
have as few design variables as possible: especially if sensitivity information is to be evaluated by
finite-difference.
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Parameterization methods used for CFD shape optimization either parameterize the design geom-
etry from which a mesh is generated or they parameterize the aerodynamic mesh itself. Geometry
parameterization methods uniquely define a surface geometry by the values of the design variables.
These methods are inherently linked with the grid generation package and optimization of a design
requires automatic grid generation tools. Methods of this nature include partial differential equation
(PDE) methods [17, 18], polynomial or spline [19], CAD and recently CST [20, 21] methods.

The use of polynomial or spline methods are common throughout the field of shape optimization
[19, 22]. An initial design is approximated by a spline or polynomial function and design variables
are either the values of the polynomial coefficients or coordinate location of the spline control points
respectively. Castonguay and Nadarajah [23] determined 32 control points were the minimum
sufficient for aerofoil design and optimization using spline control points, and even then, Reuther
[24] has shown that optimization may still be prematurely halted due to the creation of wavy
design surfaces. Another drawback can be the excessive number of design variables required to
represent a three-dimensional geometry correctly. The PARSEC [25] method forms another subset
of a polynomial method, with two separate polynomials defining the upper and lower surfaces.
This, however, can be a disadvantage as there is no constraint on the two polynomials crossing,
producing figure-of-eight aerofoils during optimization [26], and only a limited design space is
achievable [23].

CAD methods utilize the well-established commercial packages to create design surfaces;
however, parameterization of complex geometries can still be a challenging task even for modern
CAD systems.

The class function/shape function transformation (CST) [20, 21] method is a recent addition to
parameterization methods. The method is fundamental and effectively a limitless design space can
be achieved by composition of entirely smooth geometries. The method has been recently inves-
tigated by Nadarajah and Castonguay [27] and found to be effective at aerofoil parameterization
but, though it can parameterize three-dimensional geometries with only a few design variables, it
proved not as successful as either spline or mesh point methods.

Methods that parameterize the grid are generally independent of the grid generation package. The
grid topology remains unaltered throughout the optimization, but the mesh requires a deformation
algorithm. Grid generation is still a major and time-consuming challenge in industry and these types
of methods allow the use of previously generated grids for optimization—a significant advantage.
Parameterization methods of this nature include, discrete [24, 28, 29], analytical, basis vector [30],
free-form deformation algorithms (FFD) [31], and domain element methods [32].

The discrete method uses mesh points themselves, i.e. the (x, y, z) locations of the design surface
mesh points to form the design variables [24, 28, 29, 33]. There is no real limit on the attainable
geometry produced using this method. This approach is easy to implement, although the number
of design points can become very large, and maintaining smooth geometries can be difficult as the
surface is not defined by a continuous function. Sensitivity information can be difficult to obtain
if using a finite-difference methodology as the independent displacement of a single mesh point
may cause the flow solver to become ill conditioned.

The basis vector method [30] uses several design vectors based on proposed grids to represent
the design shape, and free-form design methods are derived from soft object animation (SOA)
methods [31], where computer graphics programs are used to morph images and deform designs
to achieve the desired geometry.

The analytical parameterization method provides a compact formulation for the representation
of two-dimensional aerofoils. The method is commonly used for shape optimization and forms the
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basis for some commercial two-dimensional aerodynamic shape optimization programs, such as
LINDOP [34] with MSES [35]. The method is centred around adding shape functions (analytical
functions) linearly to the initial design. Hicks–Henne ‘bump’ functions [1, 2, 9, 24] also form a
subset of this type of method and again Castonguay and Nadarajah [23] have shown difficulty in
recreating many aerofoils by inverse design using this parameterization method.

Domain element-type techniques have been seen in commercial shape optimization software
packages, such as SCULPTOR [32]; however, little information on this particular parameteri-
zation method is available due to its commercial nature. A comprehensive review of available
parameterization methods is presented by Samareh [36, 37].

The parameterization method developed in the current work, and presented here, involves a
domain element that is wrapped around the exterior of a design. At the centre of this param-
eterization technique is a multivariate function kernel using radial basis functions (RBFs). This
provides an inverse mapping between the domain element, the surface geometry and the locations
of grid points in the volume mesh. The result is an efficient parameterization technique that is
independent from the grid generation package. The inverse mapping is only required once for
the initial design as the values of the parametric coordinates of the grid points with respect to the
domain element remain constant throughout the optimization. Updates to the geometry and the
corresponding mesh are provided simultaneously by the application of multivariate interpolation;
this is extremely fast and efficient and results in very high-quality mesh deformation [38]. The
long-term objective of the optimization technique presented is to allow aerodynamic optimization
of rotors, with a minimum number of design variables while remaining independent of both flow
solver and grid generation package. The parameterization technique developed has several key
advantages:

(1) The number of design variables required to allow free-form design can be very low with
two-dimensional inverse design problems demonstrating that 22 is sufficient (see later).

(2) Design variables can range in fidelity from the coordinate of a single domain element
location, providing a detailed surface geometry change, to a gross deformation such as chord
or twist design variable. This can allow designers to choose the fidelity of the optimization,
to change only large-scale parameters or this can be combined alongside detailed aerofoil
profile change.

(3) The parameterization technique is independent of the initial geometry, with the domain
element positioned automatically according to the solid surface. This can allow very complex
or multi-element geometries to be parameterized.

(4) The parameterization method has a low number of control points (in this case the number
of domain element points), and this allows the possibility of incorporating a high-quality
interpolation to deform the surface and mesh directly from these points. This would be
impractical if all the surface mesh points were control points, for example.

(5) Updates to the surface geometry and the required volume mesh are independent of the
grid generation package. Grid generation is still a major and time-consuming challenge in
industry and the domain element method allows the use of previously generated grids for
optimization. Both structured and unstructured grids are equally applicable.

(6) The interpolation dependence needs to be computed only once, prior to any simulation.
Updates to the geometry and the corresponding volume mesh are then provided simulta-
neously by matrix–vector multiplication; this is extremely fast and efficient and results in
high-quality mesh deformation.
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3. OPTIMIZATION APPROACH

Owing to the volume of industrial and academic effort, it is expected that modern aerodynamic
designs lie in proximity of an optimum solution (though not necessarily the global optimum).
Therefore, to search an entire design space in pursuit of a global optimum design shape may be
unnecessarily expensive to gain an improvement over current designs. Additionally, if high-fidelity
CFD is used as the analysis tool and the optimization is extended to three-dimensional shapes,
the sheer cost and volume of function evaluations required by an evolutionary-type algorithm may
render such optimization as unfeasible with current and available computational power.

Constrained gradient-based optimizers used to minimize an objective function are fast and
efficient at providing solutions to local optimization problems [39, 40]. However, they can still
require the evaluation of many functions and gradients.

Each function evaluation requires the steady-state solution of a different design, but the gradient
information can be obtained in a variety of ways. The gradient (or sensitivity) is defined as
the derivative of a response (objective function) with respect to a design variable. The finite-
difference methodology is the most traditional, where the sensitivity for each design variable is
easily obtained by the relative change in the value of steady-state objective function due to a
geometric perturbation. The cost of evaluating all the sensitivities with this method is approximately
linear with the number of design variables. Hence, computation can prove expensive for a large
number of design variables, but due to the nature of the methodology, it is independent of the
flow solver used and implementation is straightforward, although perturbation size and sensitivity
scaling can be an issue. It also lends itself easily to parallelization; in a data sense, rather than
domain decomposition sense. The complex-step methodology pioneered in 1967 by Lyness and
Moler [41], which is conceptually similar to the finite-difference approach except the perturbation
is made to the i th component of the design variable. Subtractive cancellation is avoided, and the
perturbation size is less critical. However, the cost is of the same magnitude as that of a finite-
difference methodology, and an optimization becomes inherently linked to the flow solver. The
most computationally efficient method lies in the solution of an adjoint equation [28, 42] where,
after an initial evaluation of the objective function for a given geometry, the sensitivities of any
number of design variables can be obtained from a single adjoint solution. Although an adjoint
approach to optimization has been demonstrated by several researchers to be effective, and in
some cases, efficient way of evaluating sensitivities, development and implementation of such a
methodology is complex. This requires much development of a chosen specific code, which is
not practical within the DARP collaboration, and is mainly limited to inviscid analysis due to
convergence issues for viscous adjoint solvers [43].

The development of generic optimization tools encompassing a wide range of applicability has
been the principle aim of the current research. This has ultimately required the use of a finite-
difference technique for evaluating sensitivities to enable independence from the flow solver. This
easily allows scope to upgrade the CFD flow solver or grid generation package as they develop.

3.1. Gradient-based Optimizer feasible sequential quadratic programming

When considering practical and relevant optimization of aerodynamic performance of a solid body
(aerofoil/ wing /rotor blade), there are usually constraints that need to be imposed (minimum
thickness, minimum volume, minimum lift, maximum moment, etc). Unconstrained optimizations
can incorporate constraints by using a penalty function for constraints that are near or beyond
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the constraint boundary. However, these methods are now considered inefficient and have been
replaced by methods that focus on the solution of the Kuhn–Tucker equations [44].

The aim of an optimization process is to obtain the values of a set of design variables, �=
(�1,�2, . . . ,�n)T, that in some way can be defined as optimal. An objective function(s), determined
by the numeric values of the design variables, J (�), is to be minimized and can be subject to
equality constraints, inequality constraints and/or parameter bounds.

A general constrained problem description is stated as

minimize J (�)

subject to : Equality constraints Gi (�)=0, i=1, . . . ,me

Inequality constraints Gi (�)�0, i=me+1, . . . ,m

Parameter bounds �l����u

(1)

where the vector function G(�) returns a vector of length m containing the values of the equality
and inequality constraints evaluated at �.

The Kuhn–Tucker equations are necessary conditions for optimality for a constrained optimiza-
tion problem and can be stated as (in addition to the original constraints of Equation (1))

∇ J (�∗)+
m∑
i=1

�∗
i ·∇Gi (�

∗)=0 (2)

�∗
i ·Gi (�

∗)=0, i=1, . . . ,m (3)

�∗
i �0, i=me+1, . . . ,m (4)

where �∗ refers to the optimum values of �.
The solution of these equations forms the basis of nonlinear programming algorithms.

Constrained quasi-Newton methods guarantee superlinear convergence by accumulating second-
order information relating to the Kuhn–Tucker equations using a quasi-Newton updating procedure,
i.e. at each major iteration, an approximation is made of the Hessian of the Lagrangian function.
This is then used to generate a quadratic programming (QP) subproblem where the solution is
used to form a search direction for a line search procedure. This forms the basis of the sequential
quadratic programming (SQP) algorithm, since a QP subproblem is solved at each major iteration.

SQP methods represent the forefront of nonlinear programming techniques. Schittkowski [45]
has implemented and tested an SQP algorithm that outperforms all other tested methods in terms of
efficiency, accuracy and percentage of successful solutions, over a large number of test problems.
The feasible sequential quadratic programming (FSQP) algorithm used in the current research has
been written by Zhou et al. [46], and Zhou and Tits [47] and Panier and Tits [39]. The feasibility
aspect of the optimizer relates to a generated design satisfying all constraints, i.e. if an initial design
does not satisfy the specified constraints, the optimizer first achieves a satisfactory design, and
then all subsequent iterates generated also satisfy all constraints simultaneously. This particular
algorithm has been implemented across a wide range of optimization problems, most relevant
and notable is the work of Qin and Le Moigne [5–8, 43] where the algorithm is used for CFD
constrained optimization of a blended wing body using an inviscid adjoint solver to obtain the
sensitivities. Prior to implementation, the algorithm has been numerically validated against two
test cases proposed in [46].
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Owing to the generic nature of the optimization tool developed and the use of a finite-difference
technique for gradient evaluation, the cost of the optimization process is ultimately determined by
the flow solver cost. Each evolution of the optimization requires one flow solution for calculation of
objective and constraint functions, and two flow solutions per design variable to evaluate gradient
information. On top of this, there may be several more flow solutions required to evaluate a suit-
able step length to take in the search direction (based on gradient information) or re-evaluation
if constraints are not satisfied. The update to the geometry surface and volume mesh is computa-
tionally very cheap and almost insignificant when compared with a flow solution calculation.

4. PARAMETERIZATION FORMULATION

A domain element is placed around the initial body to be optimized. The element currently consists
of 16 nodes for a two-dimensional aerofoil section. A method has been developed to locate domain
element nodes automatically for aerodynamic geometries (aerofoils, wings and rotors [48]) based
on the surface geometry. The automatic location method and the development of design variables
based on those node locations were developed by the application of inverse design methods to
various aerofoil geometries [48]. The node coordinates can be adjusted or positioned manually
if so desired, or to aid parameterization of complex geometries, or when considering a specific
design situation. Figure 1(a) shows an example of parameterization for a RAE2822 aerofoil. A
multivariate interpolation method using RBFs has also been developed. The global dependence
between the domain element nodes and the aerodynamic mesh points is evaluated and translates
a deformation of the element due to a design variable change to smoothly alter the aerodynamic
shape and its corresponding volume mesh. Using the domain element method, only an initial mesh
of the original design is required to allow optimization.

Although RBFs have been used for mesh deformation techniques in shape optimization [49]
and structural–aerodynamic coupling [38, 50], their use in the current research is not to strictly or
uniquely parameterize an aerodynamic shape, but to allow that initial shape and its corresponding
aerodynamic mesh to deform in a relevant way to enable non-code and mesh-type specific aero-
dynamic shape optimization. The interpolation method developed here requires no connectivity
information and can therefore be applied equally well to either structured or unstructured grid

Figure 1. Domain element around (a) RAE2822 and (b) perturbed aerofoil.
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topologies. Domain element points and volume mesh points are simply treated as independent
point clouds with the dependence matrix computed only once.

The general theory of RBFs is presented by Buhmann [51] and Wendland [52], and the method
used is comprehensively detailed in Rendall and Allen [38].

4.1. Formulation

The solution of an interpolation problem using RBFs begins with the form of the required inter-
polation

s(x)=
i=N∑
i=1

�i�(‖x−xi‖)+ p(x) (5)

where s(x) is the function approximated, the index i identifies the centres for the RBFs (the domain
element nodes in this case), while xi is the location of that centre. For p(x), a linear polynomial is
used so that translation and rotation are recovered, i.e. if the domain element translates or rotates
then the corresponding design shape and its mesh deform retaining exact translation and rotation.
The coefficients �i are found by requiring exact recovery of the original function; this means if the
domain element returns to its initial configuration then the design shape returns to its original form.
When the polynomial term is included, the system is completed by the additional requirement
(sometimes referred to as a ‘side condition’)

i=N∑
i=1

�i q(x)=0 (6)

This applies for all polynomials q(x) with degree less than or equal to that of p(x).
For easy computational treatment that maximizes the use of matrix multiplication, the problem is

written in the following fashion. Exact recovery of the centres gives (using only linear polynomial
terms)

XDE=Cax (7)

YDE=Cay (8)

ZDE=Caz (9)

where

XDE=

⎛
⎜⎜⎜⎜⎝

0

0

0

xDE

⎞
⎟⎟⎟⎟⎠ , xDE=

⎛
⎜⎜⎜⎝
xDE1

...

xDEN

⎞
⎟⎟⎟⎠ , ax =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�x0

�xx

�xy

�xz

�x
DE1

...

�x
DEN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)
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(analogous definitions hold for YDE and ZDE and their a vectors)

C=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1 · · · 1

0 0 0 0 xDE1 xDE2 · · · xDEN

0 0 0 0 yDE1 yDE2 · · · yDEN

0 0 0 0 zDE1 zDE2 · · · zDEN

1 xDE1 yDE1 zDE1 �DE1DE1 �DE1DE2 · · · �DE1DEN

...
...

...
...

...
...

. . .
...

1 xDEN yDEN zDEN �DENDE1 �DENDE2 · · · �DENDEN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

with

�DE1DE2 =�(‖xDE1 −xDE2‖) (12)

indicating the basis function evaluated on the distance between DE1 and DE2, and subscript DE
representing a domain element control point. To locate the deformed aerodynamic mesh points,
the following matrix must be formed, where subscript a indicates an aerodynamic node:

A=

⎛
⎜⎜⎝
1 xa1 ya1 za1 �a1DE1 �a1DE2 · · · �a1DEN

...
...

...
...

...
...

. . .
...

1 xaN yaN zaN �aNDE1 �aNDE2 · · · �aNDEN

⎞
⎟⎟⎠ (13)

The positions of the aerodynamic mesh points, given by the vectors Xa , Ya and Za , are

Xa =Aax =AC−1XDE=HXDE (14)

Ya =Aay =AC−1YDE=HYDE (15)

Za =Aaz =AC−1ZDE=HZDE (16)

Since matrix C has a zero block, it is normal to extract this and solve separately, so that C is
subdivided as

C=
(

0 P

PT M

)
(17)

Hence the unknowns for the x displacements are (analogous expressions hold for the y and z
displacements)

ax =C−1XDE (18)

The solution may be expressed in terms of the component matrices of C, P and M. The matrix
products now pre-multiply xDE rather than XDE and that the vector ax/y/z has been split into the
parts that multiply the RBF and polynomial terms, so that

aPLYx =MpPM−1xDE (19)

aRBFx =M−1−M−1PTMpPM−1xDE (20)
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where

Mp =(PM−1PT)−1 (21)

Forming the coupling matrix is now straightforward

H=A

(
MpPM−1

M−1−M−1PTMpPM−1

)
(22)

In this fashion as many zeros as possible are removed from matrices that need to be inverted.
Interesting features of RBF interpolation worth noting are as follows:

• The interpolation is unique. This implies no additional constraints may be applied.
• The interpolation in all three coordinate directions is independent. This means that it is only

necessary to find and store one matrix, H, for all coordinate directions.
• The interpolation is time invariant and so only needs to be computed once, prior to any

simulation.The surface geometry and mesh are then deformed very efficiently by matrix–
vector multiplication.

Owing to the nature of forming an inverse matrix, the number of points used to link with the
aerodynamic mesh should not be excessive. Domain element methods work well with RBF mesh
deformation due to the low number of domain element node points. However, if one were to
use spline control points or surface mesh points in three dimensions, then computational memory
issues must be considered.

5. IMPLEMENTATION OF PARAMETERIZATION

The parameterization method relies upon a domain element being placed around the original design
to be optimized. This is illustrated in Figure 1 for a two-dimensional aerofoil. Up to 22 design
variables are used conforming to various deformations of the element that can be quantized; these
include twist, chord, effects of chamber and various local thicknesses. It is important to note that
not all design variables need be active, but 22 is considered to be optimum to achieve a large
and applicable range of the design space [48]. The use of more design variables was considered,
however, little benefit was gained. These design variables have been developed by experimentation
with inverse design methods. Comparison is drawn here to a common method of parameterization,
when using spline control points, typically a two-dimensional aerofoil section requires 30–50
parameters [23] to define the shape adequately, and for three-dimensional bodies this can be several
hundred. The computational implications of this number of design variables can be significant if
sensitivity information is obtained via finite-difference. Other parameterization methods can too
suffer this limitation.

Domain element nodes located around the leading edge are nearer and more clustered to the
aerofoil surface; this allows for finer control of the leading edge. This is in comparison with nodes
over the main body of the aerofoil where smooth, gross changes are generally more applicable.

The RBF interpolation is used to link the domain element nodes with the entire aerodynamic
mesh (and spline control points) shown in Figure 2. Figure 1(b) depicts a slightly exaggerated
example of the deformation caused by one of the design variables, in this case one associated with
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angle of attack (about the 1
4 chord) of the aerofoil. Figure 3 shows the resulting RBF deformation

in the aerodynamic mesh.
In order to incorporate the different design parameters in optimization in a meaningful and

relevant way, so that there is no dominance of one design parameter over any other, requires scaling.
All design variables are divided by their initial value for the original design, giving each the value
of unity. Each design variable is scaled such that an increment of one to each design variable,
taken in isolation, produces a displacement of equivalent to 1% of the aerofoil chord. This gives
approximately the same weight to all the design variables so they can then be combined into the
optimization problem in a consistent and well-conditioned manner. Parameter bounds are placed
on each design variable such that each design variable in isolation could produce a maximum
deformation to the original aerofoil equivalent to a length of ±25% of the chord length.

To evaluate sensitivity information via finite-difference requires the evaluation of the steady-
state objective function due to a geometric perturbation. The flow solver HMB [15] is used to

Figure 2. Domain element, spline control points and mesh points: (a) entire mesh view
RAE2822 and (b) zoomed view RAE2822.

Figure 3. RBF deformation: RAE2822 (mesh—purple) and perturbed aerofoil (mesh—dark blue).
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provide a fully converged flow field for all two-dimensional solutions. First-order finite-difference
are computationally the simplest to evaluate; however, to ensure no biasing towards one direction
and to increase accuracy, a second-order accurate stencil is used. Design variables, �n , give
rise to objective function J (�n,U (�n)), where U (�n) represents the evaluation of the flow field.
Perturbations, ��, are made to the design variables in order to calculate the sensitivity, defined as
dJ/d�n .

dJ

d�n
= J (�n+��n,U (�n+��n))− J (�n−��n,U (�n−��n))

2��n
+O(��2n) (23)

When considering aerodynamic shape optimization, angle of attack is an important variable.
However, within the majority of parameterization techniques it is often excluded as a design vari-
able. When lift and/or moment are aerodynamically constrained, the angle of attack is frequently
adjusted externally to the optimizer to meet the constraint. This can compromise the efficiency of
the optimizer and often leads it in misleading directions. Using the domain element parameteri-
zation technique adopted here, angle of attack is included in the optimization process as a design
variable. Consequently gradient information with respect to this design variable (with regard to
both the objective function and the constraint function) are included within the FSQP algorithm—a
significant advantage.

5.1. Optimization parameters

The perturbation size is of critical importance to ensure the correct value for sensitivity information
and has to be investigated. Figure 4 shows the viscous drag sensitivity of each design variable
across the perturbation size scale. Below a perturbation size of 1×10−6, it is apparent that the
perturbation is too small; the change in shape of the design is insufficient to disturb the flow
such as to record an accurate change. In the region of 1×10−5–1×10−3, the sensitivity of each
design variable is relatively constant, and the correct value of the gradient is obtained, Figure 4(b).
Depending on the design variable, solutions for perturbation sizes of 1×10−2 or greater may not
be shown in Figure 4(b), this is due to the aerofoil becoming so highly deformed in one particular
aspect that the viscous flow solver is unable to converge. A central-difference stencil was used

Figure 4. Viscous drag sensitivity of each design variable for differing perturbation sizing.
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Figure 5. L2norm of the 22 sensitivities across perturbation sizing scale.

Figure 6. L2norm of the 22 sensitivities for differing grid densities: (a) lift
sensitivity and (b) drag sensitivity.

about a NACA0012 aerofoil at 0◦ incidence, Mach number=0.4, Re=2×106, grid size was 50 000
cells. The L2norm of the 22 sensitivities for these results is shown in Figure 5.

The effect of grid density is also an important issue to study with regard to obtaining the
correct sensitivities. Results from a grid dependence study consisting of five levels of grid density
are shown in Figure 6. The five grids consisted of 72×12, 144×24, 288×48, 576×96 and
1152×192 mesh cells, respectively. Results indicate that a medium grid density (�50000 points)
is sufficient to obtain correct gradient information. Again the study revolved around a second-order
central-difference stencil used about a NACA0012 aerofoil at 0◦ incidence, Mach number=0.4,
Re=2×106.

6. INVERSE DESIGN

The inverse design method, pioneered by Lighthill [53], is rarely used for optimization purposes any
longer due to requirement of a priori knowledge of an improved or desirable pressure distribution.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:827–860
DOI: 10.1002/fld



840 A. M. MORRIS, C. B. ALLEN AND T. C. S. RENDALL

However, inverse design techniques are applied here to serve to evaluate the applicability of both the
parameterization method and the choice of the design variables. Although only minor deformation
of an initial design may be necessary to achieve significant improvements with regard to drag
optimization, the parameterization method must be free-form to such an extent that any likely
optimum design must be achievable. The FSQP algorithm along with an inviscid Euler solution
provided by HMB, at Mach number=0.4, on a grid consisting of 288×48 cells was used. The
grids were produced by GHMB [16]; using a three block structured C-mesh with the far field set to
15 chords, a leading and trailing edge spacing of 1×10−4 and 3×10−3, respectively. The normal
spacing is set to give aspect ratio one cell at the leading edge.

Two cases are shown here:

Inverse (1): initial aerofoil NACA2411 at 0◦; target aerofoil NACA0012 at 2◦, Figure 7.
Inverse (2): initial aerofoil NACA0012 at 0◦; target aerofoil NACA0006 at 2◦, Figure 8.

Figure 7. Inverse (1) (initial aerofoil NACA2411 at 0◦, target aerofoil NACA0012 at 2◦): (a) Cp distribution:
initial—green, target—black, optimized—blue and (b) domain element and aerofoil surface: initial—green

and light green, optimized—blue and light blue.

Figure 8. Inverse (2) (initial aerofoil NACA0012 at 0◦, target aerofoil NACA0006 at 2◦): (a) Cp distribution:
initial—green, target—black, optimized—blue and (b) domain element and aerofoil surface: initial—green

and light green, optimized—blue and light blue.
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The inverse design problem is of the form

minimize J =
Nsurface∑
N=1

(Cptarget−Cp)2N (24)

Results from Inverse (1) are shown in Figure 7. Here an asymmetric aerofoil at 0◦ incidence is
optimized until the Cp distribution matches that of a symmetric aerofoil at incidence. The geometry
profile change required to achieve this can be seen as quite considerable. Results from Inverse (2)
are shown in Figure 8. In this case, although both the initial and target aerofoil are symmetric, the
incidence and thickness change required are again considerable.

The closeness of the matches considering the low number of design variables is extremely
encouraging and demonstrates that a large and appropriate range of the applicable design space is
achievable. It must be noted that the results are presented after no more than 100 evolutions, and
although solutions lie near to an optimum, the objective function in many cases was still reducing.
More inverse design cases are presented in Morris et al. [48].

7. TWO-DIMENSIONAL AEROFOIL OPTIMIZATION

Two-dimensional aerofoil sections have been optimized using the FSQP algorithm under various
flight conditions, with several different objective functions and constraints. For many fixed wing
applications, the objective is to reduce the drag experienced by aircraft without detriment to total
lift. The pitching moment is another key aerodynamic quantity that is desired to remain low and
frequently ignored by many optimization efforts. The internal volume of the aerodynamic body
is again a necessary constraint that needs imposing. Internal volume needs preserving so that
sufficient structure or fuel can be contained within the body. As important, aerodynamic drag can
be easily reduced by a reduction in volume; therefore, an ‘optimum’ design with lower internal
volume generally may not constitute an true improvement in design.

High-quality structured grids were generated by GHMB [16]. For viscous simulations, grids
contain 576×96 mesh cells with appropriate viscous wall spacing (leading and trailing edge
spacing of 2×10−4 and 6×10−4, respectively, and a y+ spacing of 5×10−6). k–� [15] is used
for turbulence modelling and the flow is assumed wholly turbulent. The choice of the turbulence
model was swayed by two arguments, first by industrial experience from Agusta–Westland, with
whom this research is performed, and second by evidence presented in the following section. For
inviscid simulations grids consist of 288×48 mesh cells with appropriate wall spacing as used
in the inviscid inverse design cases. The pitching moment is taken about the initial aerofoil’s 1

4
chord position. Percentage changes to pitching moment are not given in the results’ tables as the
constraint is in the form of an absolute magnitude, and a percentage change value can appear
misleading when the sign of the moment has changed (Table II–XII).

Eleven optimization cases were examined, ranging form subsonic to transonic, viscous and
inviscid, and also various objective functions, details of each optimization are given in Table I.

The use of three different objective functions has been considered, namely, drag coefficient,
volume entropy and surface entropy. Both volume and surface entropy objective functions are
based on a measure of normalized local entropy. This is a measure of energy loss in the flow due
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Table I. Summary of optimization results, where subscript I indicates values of the initial aerofoil.

Case Aerofoil Flow Objective Constraint1 Constraint2 Constraint3

1 NACA0012 Subsonic viscous Cd Cl�ClI |Cm|�|CmI | Vol�VolI
2 NACA0012 Subsonic viscous Cd Cl�ClI |Cm|�|CmI | Vol� 2

3 VolI
3 NACA0012 Transonic inviscid Cd Cl�ClI |Cm|�|CmI | Vol�VolI
4 NACA0012 Transonic viscous Cd Cl�ClI |Cm|�|CmI | Vol�VolI
5 RAE2822 Transonic inviscid Cd Cl�ClI |Cm|�|CmI | Vol�VolI
6 RAE2822 Transonic inviscid evol Cl�ClI |Cm|�|CmI | Vol�VolI
7 RAE2822 Transonic inviscid esurf Cl�ClI |Cm|�|CmI | Vol�VolI
8 RAE2822 Transonic viscous Cd Cl�ClI |Cm|�|CmI | Vol�VolI
9 RAE2822 Transonic viscous evol Cl�ClI |Cm|�|CmI | Vol�VolI
10 RAE2822 Transonic viscous esurf Cl�ClI |Cm|�|CmI | Vol�VolI
11 NACA23012 Subsonic viscous 1/Cl Cd�CdI |Cm|�|CmI | Vol�VolI

Table II. Optimization (1) aerofoil results.

Initial Optimized %Diff

Cl 0.5937 0.5943 +0.1
Cm 0.0297 0.0293 —
Volume 0.0805 0.0805 +0.02
Cd 0.0135 0.0121 −10.37

Table III. Optimization (2) aerofoil results.

Initial Optimized %Diff

Cl 0.5937 0.5938 +0.01
Cm 0.0297 0.0296 —
Volume 0.0805 0.0594 −26.31
Cd 0.0135 0.0110 −18.67

to the aerodynamic body and is defined as

e= Plocal/�
�
local

P∞/��∞
−1 (25)

Values of zero for normalized entropy indicate no loss in the flow, conversely, where shocks or
retardation of flow due to boundary layers or wakes are present, the value of entropy is higher due
to these non-isentropic processes. The volume entropy values are then computed by

evol=
∑Ncells

N=1 eN ∗VN∑Ncells
N=1 VN

where VN is cell volume (26)
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Surface entropy is a measure of the entropy experienced at the surface of the design geometry
and is evaluated by

esurf=
∑Nsurface

N=1 eN ∗�SN∑Nsurface
N=1 �SN

where �SN is the cell surface length (27)

7.1. Subsonic drag optimization (optimizations (1) and (2))

ANACA0012 aerofoil is optimized for two different volume constraints under same flow conditions
(�I =5◦, Mach=0.4, Re=2×106) with the objective of reducing the viscous drag coefficient.
Both aerofoils are subject to the same lift and moment constraints; however, to highlight the effect
that reduction of a body’s volume can have on the drag coefficient; optimization (1) is subject to
a rigid constraint of Vol�VolI , whereas optimization (2) is subject to a less stringent requirement
of Vol� 2

3VolI .
Figure 9 compares the initial and optimized domain elements and the corresponding aerofoils

for the two subsonic optimizations. Figures 10 and 11 depict flooded Cp and surface Cp plots for
initial and final aerofoils, respectively. Optimized aerofoils are seen to reduce the ‘in-flight’ angle
of attack and incorporate effects of chamber to maintain lift and reduce drag.

The achievement of over 10% reduction in viscous drag for a heavily constrained aerofoil
in subsonic conditions is an extremely encouraging result. When the volume of the aerofoil is
allowed to decrease, over an 18% reduction is observed, this extra reduction in drag is expected
due to an allowable decrease in volume and hence maximum thickness. These results are not
only encouraging but they also highlight the need for a volume constraint to be imposed so that
optimized designs can be compared with initial aerofoils on a truly like-for-like basis.

Observation of the history of the percentage reduction in objective function (and internal volume
of the aerofoil) through the optimizations, Figure 12, shows some insight, and possibly advantages,
to the way the FSQP algorithm works. Seen for both optimizations (1) and (2), the objective
function decreases in a step-like fashion. Over the first few evolutions, the optimizer is guided
by first-order gradient information only, and a plateau is soon reached (it is likely that a first-
order gradient optimizer may halt here). Around this new design point, a few evolutions are
required for the optimizer to gain accurate approximations of the second-order gradients. Once the
Hessian is sufficiently accurate, a new search direction can be found and another rapid decrease in

Figure 9. Domain element and aerofoil points: NACA0012 aerofoil—green and light green, optimized
aerofoil—blue and light blue: (a) optimization (1) and (b) optimization (2).
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Figure 10. Flooded Cp plot of initial and optimized aerofoils: (a) NACA0012 aerofoil;
(b) optimization (1); and (c) optimization (2).

Figure 11. Cp plot of initial and optimized aerofoils.
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Figure 12. History of objective function through optimization:
(a) optimization (1) and (b) optimization (2).

objective function is achieved, and this pattern continues. Figure 12(a) for optimization (1) clearly
shows the volume constraint, and an optimum design is achieved after 67 evolutions. However,
for optimization (2), Figure 12(b), where the volume is allowed to decrease significantly, this
increases the size of the design space considerably and 133 evolutions are required to achieve an
optimum design. Interestingly the design does not lie on the volume constraint boundary, only
having achieved a 27% reduction.

7.2. Transonic drag optimization (optimizations (3) and (4))

In a transonic flow regime aerofoil designs frequently exhibit shockwaves, this in-turn can lead
the wave drag to be a significant proportion of the total drag. Fixed-wing aircraft typically cruise
at transonic Mach numbers, and low total drag values in this flow regime are crucial to economic
success, and thus a significant proportion of aerodynamic design effort is placed around this design
point. Inviscid flow calculations can calculate wave drag efficiently and they are typically much
faster than viscous calculations not only due to simpler equations to solve but also due to a lower
grid density required. To introduce optimization methods into industrial design loops, results need
to be obtained quickly; hence, viscous calculations are typically prohibitive. Therefore in this
subsection a comparison is made between optimized aerofoils obtained under viscous and inviscid
flow calculations.

Both optimizations centre around on NACA0012 aerofoil at �I =50, Mach = 0.65, however,
optimization (3) is achieved under inviscid conditions, whereas optimization (4) is obtained using
viscous calculations (Re=1×107). Results are given in Tables IV and V, respectively.

Figure 13 compares the initial and optimized domain elements and the corresponding aerofoils
for the transonic optimizations. Figure 14(a) and (b) shows the flooded Cp plots for the initial and
final aerofoils of optimization (4) and Figure 14(c) and (d) for optimization (3). Figure 15 shows
initial and optimum aerofoil surface Cp plots.

In the transonic test cases, the initial NACA0012 aerofoil exhibits a strong shock at 1
4 chord, this

shock is slightly stronger and sharper for the inviscid case, as to be expected. The inviscid aerofoil
has a drag coefficient of 0.0188, approximately 20% lower than the viscous drag coefficient for the
same geometry under the same flow conditions. The shockwave appears only marginally weaker
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Table IV. Optimization (3) aerofoil results.

Initial Optimized %Diff

Cl 0.7956 0.7957 +0.01 (−2.06)
Cm 0.0132 −0.0117 —
Volume 0.0805 0.0817 +1.49
Cd 0.0188 0.0039 −79.25 (−42.67)

Table V. Optimization (4) aerofoil results.

Initial Optimized %Diff

Cl 0.7164 0.7182 +0.25
Cm 0.0214 −0.0211 —
Volume 0.0805 0.0813 +1.00
Cd 0.0239 0.0131 −45.18

Figure 13. Domain element and aerofoil points: NACA0012 aerofoil—green and light green, optimized
aerofoil—blue and light blue: (a) optimization (3) and (b) optimization (4).

for the viscous case, and with a significant amount skin friction drag with a total drag coefficient
of 0.0239.

Optimization (4) produced a final aerofoil with more than a 45% reduction in viscous drag, and
optimization (3) produced an aerofoil with nearly an 80% reduction in inviscid drag. To verify the
result from inviscid optimization (optimization (3)), this final aerofoil geometry was also solved
in viscous flow (on a new viscous mesh containing 576×96 cells), and a flooded Cp plot of this
solution can be seen in Figure 14(e). The difference between the results of this viscous solution
of the aerofoil geometry produced by inviscid optimization and the initial viscous NACA0012
aerofoil are given in brackets in Table IV.

It is noted that the design resulting from an inviscid optimization still produces notable reductions
in viscous drag—comparable to the aerofoil from viscous optimization. This result is significant,
and optimizations can therefore be legitimately performed with inviscid analysis, which is vital
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Figure 14. Flooded Cp plots of initial and optimized aerofoils: (a) NACA0012 inviscid;
(b) optimization (3); (c) NACA0012 viscous; (d) optimization (4); and (e) optimization

(3) aerofoil when solved under viscous conditions.

when considering cost implications if this method is extended to three-dimensional bodies, or
when attempting to implement optimization in industrial design loops. It can be clearly seen from
the Cp plots that for both viscous and inviscid optimizations shock strength has been reduced
dramatically.
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It is noted here that the initial NACA0012 aerofoil is operating well outside its intended
design range; hence such large improvements in drag can be achieved. However, it serves here to
demonstrate and validate the concepts.

7.3. RAE2822 Transonic drag optimization (optimizations (5)–(10))

Test case 9 from the AGARD experimental database [54] for the RAE2822 aerofoil is commonly
used as a benchmark for optimization. The test conditions are �I =2.670, Mach=0.73 and Re=
6.5×106. The experimental data is compared to inviscid and various viscous CFD calculations,
Figure 16. The k–� turbulence model provides superior results with regard to matching the
experimental Cp distribution and thus is the turbulence model employed throughout all viscous
optimizations.

Optimizations (5)–(10) concern the optimization of the AGARD test case aerofoil with rigid
constraints on moment, volume and lift. However, the effectiveness of different objective functions

Figure 15. Cp plots of initial and optimized aerofoils.

Figure 16. Cp distributions for RAE2822.
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is assessed in both an inviscid and a viscous environment. Optimizations (5)–(7) are performed
with inviscid calculations and are analogous to optimizations (8)–(10) performed under viscous
conditions. Refer to Tables VI–XI for details of optimization results.

Table VI. Optimization (5) aerofoil results.

Initial Optimized %Diff

Cl 0.9571 0.9571 0.00 (−2.63)
Cm −0.1371 −0.1371 —
Volume 0.0773 0.0781 +0.01
Cd 0.0182 0.0073 −59.85 (−15.85)
evol 0.003758 0.000617 −83.58 (−22.56)
esurf 0.009009 0.005332 −41.11 (−0.65)

Table VII. Optimization (8) aerofoil results.

Initial Optimized %Diff

Cl 0.8017 0.8029 +0.15
Cm −0.0987 −0.0986 —
Volume 0.0773 0.0776 +0.40
Cd 0.0183 0.0136 −25.68
evol 0.005054 0.003151 −37.65
esurf 0.304841 0.302112 −0.88

Table VIII. Optimization (6) aerofoil results.

Initial Optimized %Diff

Cl 0.9571 0.9600 +0.3 (−3.03)
Cm −0.1371 −0.1370 —
Volume 0.0773 0.0781 +0.01
Cd 0.0182 0.0078 −57.14 (−14.75)
evol 0.003758 0.000530 −85.89 (−21.20)
esurf 0.009009 0.004553 −50.04 (−0.62)

Table IX. Optimization (9) aerofoil results.

Initial Optimized %Diff

Cl 0.8017 0.8033 +0.20
Cm −0.0987 −0.0987 —
Volume 0.0773 0.0774 +0.13
Cd 0.0183 0.0137 −25.13
evol 0.005054 0.003130 −38.06
esurf 0.304841 0.301802 −0.98

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:827–860
DOI: 10.1002/fld



850 A. M. MORRIS, C. B. ALLEN AND T. C. S. RENDALL

Table X. Optimization (7) aerofoil results.

Initial Optimized %Diff

Cl 0.9571 0.9577 +0.06 (−2.11)
Cm −0.1371 −0.1365 —
Volume 0.0773 0.0789 +0.02
Cd 0.0182 0.0097 −46.70 (−14.21)
evol 0.003758 0.000947 −74.80 (−20.33)
esurf 0.009009 0.003509 −59.20 (−0.59)

Table XI. Optimization (10) aerofoil results.

Initial Optimized %Diff

Cl 0.8017 0.8031 +0.17
Cm −0.0987 −0.0986 —
Volume 0.0773 0.0774 +0.13
Cd 0.0183 0.0150 −18.03
evol 0.005054 0.003766 −25.48
esurf 0.304841 0.302007 −0.91

Optimizations (5) and (8) concern drag coefficient minimization, optimizations (6) and (9)
concern the minimization of volume entropy, defined by Equation (26), and optimizations (7)
and (10) are also concerned with entropy minimization, but through surface entropy defined by
Equation (27).

The resulting geometries produced under inviscid conditions (optimizations (5)–(8)) are subse-
quently solved under viscous conditions (on new viscous meshes containing 576×96 cells) and
compared with the forces resulting from the initial viscous RAE2822 aerofoil. These results are
then highlighted in brackets in the relevant tables.

Figure 17 shows initial and optimized domain element and aerofoil geometries. The optimized
designs in all six cases required only minor deformation from the initial RAE2882 aerofoil, and
interestingly, all six designs are very similar. Figures 18 and 21 depict Cp plots for initial and
optimized geometries. Figures 20 and 23 are analogous to those figures just mentioned; however,
they depict normalized entropy.

Comparing the initial RAE2822 aerofoil under inviscid and viscous conditions, Figure 18(a)
and Figure 21(a), respectively, in both circumstances the upper surface of the aerofoil is dominated
by transonic flow, but the inviscid solution results in a stronger shockwave further downstream, as
expected. This is also observed from the surface Cp plots, Figure 19. Hence, this is a harsh test
case for an inviscid-viscous optimization comparison, as the two initial flow fields are substantially
different due to the effect of viscosity. It is important to note that the long-term aim of the
optimization methods developed are to perform rotor optimizations, where it is expected that any
transonic regions will be small, and so similar to those of the NACA0012 aerofoil used in the
previous two sections.

For optimizations (5)–(10) all six objective functions result in a design that achieves a reduction
in the viscous drag coefficient. The entropy plots, Figures 20 and 23, clearly highlight that each
optimized aerofoil has significantly reduced losses, and in nearly all cases removes most of the
losses associated with the initial strong shock wave of the RAE2822 aerofoil. For inviscid cases,
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Figure 17. Domain element and aerofoil points: RAE2822 aerofoil—green and light green, optimized aero-
foil—blue and light blue: (a) optimization (5); (b) optimization (8); (c) optimization (6); (d) optimization

(9); (e) optimization (7); and (f) optimization (10).

all high levels of entropy are removed from the flow, whereas for viscous optimizations almost all
losses associated with the shock are removed, but some high losses contained within the boundary
layer remain, Figure 22.

Comparing the three inviscid optimizations (5)–(7), it is optimization (5) using inviscid drag
coefficient as objective function that results in the superior aerofoil. For this aerofoil, inviscid drag
is reduced by 60%, and when solved under viscous conditions approximately a 16% reduction in
drag is observed when compared with the initial viscous RAE2822 aerofoil. Constrained in lift,
inviscid optimizations aim at reducing wave drag, and all three optimizations here have managed
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Figure 18. Flooded Cp plot of initial and optimized aerofoils (inviscid): (a) RAE2822 inviscid; (b)
optimization (5); (c) optimization (6); and (d) optimization (7).

Figure 19. Cp plots of initial and optimized aerofoils.
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Figure 20. Flooded entropy plot of initial and optimized aerofoils (inviscid): (a) RAE2822 inviscid;
(b) optimization (5); (c) optimization (6); and (d) optimization (7).

to reduce shock strength significantly with only minor shape adjustment. However, when these
designs are subsequently solved in a viscous environment skin friction drag, unaccounted for in
the optimizations and a major contributor to total drag, reduces the impact of shock strength
reduction on total drag coefficient. Furthermore, the optimum designs may have affected boundary
layer—shock interaction in an adverse way. Although the lift coefficient is maintained throughout
the inviscid optimization, the optimized design when placed in a viscous environment produces an
aerofoil that has a lower lift coefficient than the initial viscous RAE2822 aerofoil. Lift can simply
be augmented by an increase in incidence but produces an associated detriment with drag.

Interestingly, optimizations (6) and (7), using entropy objective functions, produce similar aero-
foil geometries to optimization (5); therefore, similar performance characteristics to the design
achieved through an inviscid drag coefficient optimization.

Out of the three viscous optimizations (8)–(10), again it is the design resulting from the drag
coefficient as the objective function that produces the superior design (optimization (8) with over
25% reduction in viscous drag), although the aerofoil from optimization (9) using volume entropy
as objective function is only marginally worse.
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Figure 21. Flooded Cp plot of initial and optimized aerofoils (viscous): (a) RAE2822 viscous;
(b) optimization (8); (c) optimization (9); and (d) optimization (10).

Figure 22. Cp plots of initial and optimized aerofoils.
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Figure 23. Flooded entropy plot of initial and optimized aerofoils (viscous): (a) RAE2822 viscous;
(b) optimization (8); (c) optimization (9); and (d) optimization (10).

It is noted from all optimizations that the value of surface entropy decreases only slightly (�1%)

even for optimizations where over a 25% reduction in drag coefficient is observed. Of the three
different objective functions investigated, it is surface entropy that produces the least improvement
in design, in both an inviscid and a viscous situations. More importantly, in a viscous situation,
using volume entropy as the objective function actually results in lower surface entropy than
when surface entropy is used as the objective function itself. Surface entropy values are relatively
insensitive to drag changes, so all design variables have a relatively similar and small gradient,
therefore making it difficult to establish a good search direction to drive the shape deformation
for ultimately reduced drag coefficient.

Again it is worth noting that strict constraints on volume, moment and lift were imposed on all
optimizations here, and reductions in viscous drag between 14 and 25% are significant results.

7.4. Subsonic lift optimization (optimization (11))

A rotor-type aerofoil case is now considered. This is optimization of an aerofoil section to provide
a rotor with improved aerodynamic performance in forward flight. On the retreating side of a rotor
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Table XII. Optimization (11) aerofoil results.

Initial Optimized %Diff

Cl 1.305 1.386 +5.98
Cm 0.0063 −0.0062 —
Volume 0.0797 0.0799 +2.5
Cd 0.0415 0.0415 +0.0

Figure 24. Domain element and aerofoil points: NACA23012 aerofoil—green and light green,
optimized aerofoil—blue and light blue.

blade at inboard locations, it is often desirable to have an aerofoil that provides a large amount
of lift at a significant incidence angle in low Mach numbers but must also exhibit low drag at
low incidence when on the forward side of the rotor disc. The NACA23012 aerofoil is a typical
example of an aerofoil section used for this type of application. In the following optimization,
the NACA23012 aerofoil is optimized for lift at a high incidence at a low subsonic Mach number
(M=0.3, Re=3×106, �I =120). A rigid constraint is placed on moment, volume and importantly
drag; this final constraint should ensure good working performance while the aerofoil is on the
forward side of the rotor disc. Results of the optimization are given in Table XII, and initial and
final domain elements and aerofoil geometries are shown in Figure 24.

It is clear from the Cp distribution plots in Figure 25 that there is an increased region of
low pressure when compared with the initial aerofoil; however, the suction peak has diminished
somewhat. Therefore, the optimized aerofoil has been able to improve upon the already well-suited
NACA23012 by reducing viscous stresses associated with the strong suction peak allowing an
increased lift by nearly 6% without any volume, moment or drag penalty.

8. CONCLUSIONS

A completely generic ‘wrap-around’ aerodynamic optimization tool has been developed and
presented. This comprises a domain element method with a new geometric parameterization
technique for application to CFD-based aerodynamic optimization. The parameterization uses radial
basis functions (RBFs) to interpolate positions of the domain element and the grid coordinates to
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Figure 25. Cp plots of initial and optimized aerofoils: (a) NACA23012 aerofoil; (b) optimization (11);
and (c) Cp distribution: NACA23012-black, optimization (11)-dark blue.

provide simultaneous deformation of the design surface and its corresponding aerodynamic mesh.
The inverse mapping is only required once for the initial design as the values of the parametric
coordinates of the grid points with respect to the domain element remain constant throughout the
optimization. Updates to the geometry and the corresponding mesh are provided simultaneously
by matrix–vector multiplication; this is extremely fast and efficient and results in very high-quality
mesh deformation. This domain element technique allows for optimization to be performed totally
independently from the mesh generation package and topology, requiring only an initial mesh.
Two-dimensional aerofoil inverse design and heavily constrained aerofoil optimization is centred
around a feasible sequential quadratic programming (FSQP) gradient-based optimizer, where sensi-
tivity information is provided by finite-difference; this allows for independence from the flow
solver used.

The domain element is automatically located around the exterior of a design. This is a key
advantage, allowing complex or even multi-element geometries to be parameterized. Design vari-
ables can range in fidelity, from the gross deformation of a design to local detailed surface changes,
and inverse design problems have demonstrated that 22 design variables are sufficient to achieve
a large and applicable range of design space.
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Constrained drag optimization of aerofoil sections has shown that significant reductions in drag
are achievable. Viscous drag reductions in the order of 10% are observed for a wholly subsonic
aerofoils with rigid constraints on lift, moment and volume. If the volume constraint is relaxed
slightly, a further 8% reduction in drag is achievable. For aerofoils in transonic Mach numbers
(with stringent constraints on lift, moment and volume), viscous drag reductions range from 14 to
45% depending on the aerofoil and flow conditions. Using measures of entropy in the flow as an
objective function has also shown to produce aerofoils with similar performance characteristics to
those optimized with drag coefficient as the objective function. More notable, this is also true for
inviscid optimizations. Although no design resulting from an inviscid optimization is superior to
the design resulting from a viscous optimization, the sometimes small difference in performance
is nonetheless impressive considering the extra computational overhead of a viscous optimization.
This last finding has significant computational cost implications once the method is extended to
three-dimensional geometries.

Although two-dimensional results are presented here, the parameterization method presented
can be equally applied to three-dimensional bodies, where the reduction in the required number
of design variables will be even more significant. The parameterization technique cannot only
combine variables of different scales and types with only a few parameterization nodes, but it
can lead to a significantly reduced number of design variables for a three-dimensional application
when compared with many other types of parameterization method.
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